Winter 2017 Maine Ocean and Coastal Acidification Partnership Meeting

Bigelow Laboratories December 18, 2017

- 1:00—1:15 Welcome and Introductions
 - James McManus of Bigelow Laboratories
 - Esperanza Stancioff
 - Introduction of Steering Committee
 - Susie Arnold
 - Ivy Frignoca
 - Aaron Strong
 - Mick Devin
 - Lydia Bloom
 - Mick Kuhns
 - Richard Nelson
 - Advisory Cmmt. Introduction
- 1:15—1:25 MOCA Business- Overview of MOCA timeline, governance changes and language including policies and discussion-- Susie Arnold, Island Institute
 - o Celebrate Successes
 - Holding events since 2013
 - Transitions
 - Susie is stepping down as coordinator; replaced by Ivy Frignoca, the Casco Baykeeper
 - Esperanza Stancioff as assistant coordinator
 - Aaron Strong of UMO as external engagement coordinator
 - Ivy will serve one year; will be replaced by Esperanza
 - o Goals
 - Keep steering committee between 5-8 people
 - Wide range of people
 - Industry
 - Looking for aquaculture
 - State Government
 - Advisory Committee overview
 - o Overview of new governance documents
 - o New policy around external engagement
 - o Introduction to new policy for how to comport oneself on Google Group
- 1:25—1:35 MTI update and Ocean Acidification Alliance as an affiliate (non-jurisdictional member), and discussion—Aaron Strong, UMaine
 - o International Alliance to Combat Ocean Acidification
 - Formed in 2016 by Governors of CA, OR, WA, and Premier of BC
 - Volunteer partnership
 - Can be business, non-profits, governmental entities
 - Must commit to "taking action" and sharing knowledge
 - What is action

- Advance scientific understanding of OA
- o Take meaningful actions to reduce the causes of acidification
- Protect the environment and coastal communities from impacts of changing ocean
- Expand public awareness and understanding of acidification
- o Build sustained support for addressing this global problem
- Maine is not a member, but there are affiliates in Maine
 - Work being done to have MOCA join as affiliation member
 - For Maine to join, either an act of legislation or come from Governor's office. No commitment of funds.
- Qs from Bill Mook of Mook's Sea Farm on how a company joins as affiliate member
- Overview on Lightning round from Maine Technology Institute
 - How to lead state-wide monitoring program
 - How to prepare for next round
 - Can include both physical things in water and data infrastructure
- 1:35—2:30 Panel: Updates on Casco Bay Monitoring Mike Doan, Friends of Casco Bay; Nichole Price, Bigelow Laboratory for Ocean Sciences; Joe Salisbury, University of New Hampshire
 - o Mike Doan, Friends of Casco Bay
 - Introduction to Friends of Casco Bay
 - Has been monitoring for 26 years through discrete monitoring
 - Monitoring sites throughout Casco Bay
 - Overview of Casco Bay Monitoring
 - First Continuous Monitoring site
 - Wanted Central to the Bay
 - Off a float
 - o Sites in 4m of water in high tide
 - Has a transducer
 - o PC02 Sensor
 - Learning Curve
 - How to maintain and care
 - Checked every two weeks
 - o PC02 sensor maintained once a year
 - When is best in year to send to manufacturer
 - Information Learned So Far
 - Seeing warmer waters later in the year
 - Highs not necessarily higher but lows are not as low
 - Salinity around 30ppt, normal dip in spring with snow melt
 - Dissolved Oxygen
 - Peaks in Spring
 - o Falls off Spring and Summer, rebounds in fall
 - Chlorophyll
 - o Short spike early, drop off
 - Spike again March and April

- Drop off April-August
- Spike again in September and November
- pH
- Peak in Spring
- Fall off in Spring and Summer
- pCO2
 - o Lower in Feb and March
 - Peak in Sept and October
- Slice: Overview of pH and pCO2
 - Diurnal variability present
 - Biological influences on daily trends
- Questions
 - Ask to see Nitrogen data
 - o Not available but usually sees values of .35
 - Any invective phenomenon
 - o Still early, more looks at tides, etc.
 - How tight is relationship between pH and PCO2 without time present
 - o Very tight.
 - o Temperature a driver
 - Bill Mook confirming they are seeing same trends
 - Any of the results related to the late season bloom
 - Yes, and will be looking at it again next year
 - Comment that it might be useful to share learning curve at upcoming workshops to help aid community
- o Nicole Price of Bigelow Labs
 - Maine coastline is prone to acidification
 - This is first year there will be multiple year-round observation sites
 - First Observation: Ocean Approved Farm (Seaweed) and study site
 - Off Little Chebeague in Casco Bay
 - Assessment both at kelp farm and at nearby control site
 - o Higher Omega level and pH around kelp farm
 - Overview of Halo
 - Allows you to map in real time
 - Challenge: how to drive the boat to get clear real-time data
 - o Solution: Use a circular pattern
 - Challenge for upcoming year
 - Disentangling salinity and CO2
 - Questions
 - How long does it take to get sample?
 - Only a few hours but need to ensure that not taking so long that it gets tangled with diurnal data
 - Damariscotta River Projects
 - Rockweed Harvest and CO2 absorption
 - o Harvesting may induce, have no effect, or may reduce C02 uptake
 - Harvester came up to Bigelow to do pretend harvester in May

- Came back in June
- As harvested Rockweed recovers, becomes more productive than non-harvested area
- o Bigelow plans on continuing to do assays in area
- O Question: On Balance over year, do they take on same amount?
- Work on Kelp "Seed" and assisted evolution
 - Bigelow Working to do cross-breeding to do find more resilient strains of kelp
- Ocean Liming
 - Two Questions from Undergrad Intern's Research
 - Are present-day oyster farm conditions corrosive
 - Evidence shows self-limitation
 - o Can ocean liming work with this?
 - Takeaway so far
 - o PCO2 levels very high in Damariscotta
- Problems with Shell Waste
 - Legal Issues
 - o Maine: Not permitted to deposit or discard any dead marine animal or its parts in intertidal zones, harbors, or rivers
 - o CWA: Included in pollutants
- Liming may work where phytoremediation is not feasible
- o Joe Salisbury, UNH
 - Casco Bay Observations
 - Background
 - o Shawn Shellito takes care of instruments
 - o Chris Hunt is responsible for discrete analyses
 - o Melissa Melendez, PhD student applied a 1-d mode to the data
 - Joe Salisbury oversees the project
 - Data
 - Higher in PCo2
 - Seasonal Cycle
 - Similar to other data, but higher with PC02 and lower with pH (proximity to harbor? On the bottom?)
 - Oxygen v. pH
 - Nice linear relationship
 - o Usually indicative of system driven by temperature and biology
 - o High productivity during stratified conditions
 - o VERY low pH during intense rains
 - Other observation
 - Ocean water showing very low pH as well
 - o Offshore water coming in and mixing with low pH freshwater
 - Models
 - Higher C02 during high wind periods
 - TA
 - Not many TA measurements in Casco Bay

- Omega Data
 - o Spikes in July
- Seasonal Ranges from Casco
 - TA: 447
 - Omega: .71
 - DIC: 487
 - O2: 141
 - Temperature: 17
- Takeaways: Temperature and Salinity are the major drivers during the summer on seasonal variations in PCo2
- o Thoughts: Have a cruise where visit multiple sites
 - Measure PC02, alkalinity, pH, oxygen, and others.
 - Will not just be surface, will get data from deeper waters through bilge system
- Ouestion:
 - Aaron Strong: Should we be anticipating lower saturation rates consistently in Spring and Fall?
 - Thermodynamic forcing of Aragonite seems to support that
 - To what extent is inshore collection of organic matter influencing?
 - Organic matter is easy to be thought of as a culprit but also being used as feed
 - Bill Mook: Observation between salinity and temperature.
- 2:30—2:45 Coffee Break
- 2:45—3:45 Panel: Harmful Algal Blooms and potential links to OA- Barney Balch, Bigelow; Bryant Lewis, Department of Marine Resources; Ivy Frignoca, Friends of Casco Bay
 - Barney Balch
 - GNATS transect
 - Runs from Portland and Yarmouth, NS
 - Early bias to late spring to early fall
 - Year round effective as of 2006
 - Use the Hovmoller space-time diagrams
 - Between 2016-2017, HUGE increase in temperature
 - Did not believe at first; must be associated with temperature from ship
 - Salinity
 - Lower salinity observed cross gulf
 - Compare with gulf salinity during wet years (2006-2011)
 - Density
 - Cross gulf lower density
 - Absorption
 - Lower absorption across gulf
 - o Compare with high absorption during wet years
 - Temperature Gradients
 - Photosynthesis
 - Productivity dropped by factor of five around 2006

- Rose against for first time in decade in 2017
- Silicate
 - Drop recently
- Nitrate-Silicate
 - Nitrate in excess unless in wet years
- Alkalinity
 - Low with some exceptions
- DIC
 - High values in 2015
- Omega Aragonite
 - Across the gulf of Maine down to sub 1.5
 - o Some even below 1
 - Related to temperature and solubility?
- pH
- 8.3 in summer months
- HABS-Alexandrium
- o Bryan Lewis, DMR Supervisor for Western Maine
 - HAB trends on the East Coast
 - Florida
 - o Gulf Coast is most active but events do occur on the East Coast
 - Year Round Concern
 - Neurotoxic Shellfish Poisoning
 - "Red Tide"
 - Karenia brevis
 - Since 1940s, recurring
 - Paralytic Shellfish Poisoning
 - "Red Tide"
 - Shellfish or pufferfish (all 7 cases)
 - Recurring
 - Amnesic Shellfish Poisoning
 - Pseudo-nitzschia
 - No illness
 - o Ciguatera Fish Poisoning
 - o Brown Tide
 - Mid-Atlantic
 - Karlodinium veneficum
 - Non toxic, fish kills
 - o Brown tide
 - Aureococcus anophagefferens
 - Marine fauna kills
 - First suspected event in 1985
 - Northeast
 - Paralytic Shellfish Poisoning
 - Alexandrium species
 - "Red tide"

- Recurring, most common
- Amnesic Shellfish Poisoning
 - Pseudo-nitzschia
- Diarrhetic Shellfish Poisoning
 - Dinophysis species, prorocentrum lima
- Karania mikimotoi
- Brown Tide
 - Non-toxic to humans
 - Mid-Atlantic through LIS recurring
- o Rust Tide
- DMR's HAB monitoring
 - Since 1996: Phytoplankton used as early warning for shellfish biotoxins
 - Phytoplankton thresholds trigger shellfish collection
 - DMR staff & Citizen Scientist collaboration
 - o 81 stations in 2017
 - PSP monitoring
 - Yearly regional closures (high risk, low value species)
 - March-September phytoplankton observed
 - o 150/218 shellfish above regulatory (80ug/100g) from Casco Bay
 - First time all bivalve shellfish species closed for harvest (Casco Bay)
 - Closures: May 2nd-July 27
 - Cyst beds cause some predictability
 - DSP monitoring
 - Shellfish sampling based on phytoplankton
 - 2,000 cells/ L Dinophysis or P. lima
 - Shellfish sampling occurred in August
 - No toxin detected
 - 2016 shellfish tested with 2 methods
 - PP2A kit had numerous positives, LCMS had non
 - Possible unknown okadaic acid
 - Casco Bay and MDI had highest counts
 - o No closures in 2017
 - ASP Monitoring
 - Shellfish sampling based on phytoplankton
 - o 2,000 cells/ L Pseudo-nitzschia
 - o Phytoplankton bloom observed May to present
 - Closures
 - Blue Hill Bay, Frenchman's Bay, near Machias Bay, Cobscook Bay: Sept-December
 - Casco Bay and portions of New Meadows-December
 - ASP monitoring advances
 - Within days of first observed pseudo-nitzschia samples, having toxins in shellfish
 - Emerging threats
 - Cochlodinium polykrikoides

- Maine's first observation in Casco Bay region
- Warm water, causes low DO and animal toxins
- Numerous kill observations
- o Steve Archer, Bigelow
 - Bigelow's Analytical Services: Toxin analyses/OA/MOCA
 - HPLC
 - High Performance Liquid Chromatography
 - o Introduced to help DMR
 - o Bigelow only lab in USA that is FDA approved for PSP analyses
 - Saxitoxin
 - Responsible for the PSP
 - Very toxic
 - Other countries
 - CEFAS in UK
 - o 3k analyses from Scotland to Dover
 - Netherlands
 - New Zealand
 - Canada
 - o CFIA-ACIA
 - Possible new pseudonitzschia species in the GOM?
- o Ivy Frignoca, Casco Baykeeper
 - Casco Bay Algal Blooms (2016-2017)
 - Nitrogen Concentration in Casco Bay
 - o Highest in New Meadows and Portland
 - 2016
 - Thick mats in three locations
 - Mill Cove (SoPo)
 - Back Cove
 - Pleasantdale Cove
 - O Under algae, pH 7.16 to 6.4 in a week
 - o Clams stressed in first week, dead in the second
 - 2017
 - Nuisance blooms started earlier, grew larger, lasted longer
 - Algal mats can:
 - Prevent juvenile clam settling
 - Suffocate animals under mat
 - Change sediment pH
 - Change diversity
 - o Back Cove Bloom stayed until October
 - Other observed algal mats
 - Basin Cove Harpswell
 - Algal mat so thick that juvenile clams could not settle
 - Summary
 - Notable increase in productivity, more phytoplankton, more nuisance algae

- o Higher water temps
- o Drought like conditions second summer in a row
- Action
 - Casco Bay Estuary Partnership and MOCA partnership
 - Clean Water Act permits
 - Support budget and policy that protects science and acknowledges climate change
 - o Legislation- local, state, and federal
 - Life style choices- reduce/eliminate lawn fertilizers; pet waste; carbon footprint
- 3:45—4:15 Keynote: Regional Greenhouse Gas Initiative (RGGI) updates-- Kathleen Meil, Policy Advocate, Acadia Center (non-profit, research and advocacy org committed to advancing the clean energy future)
 - State and Regional Action on Carbon Markets
 - RGGI
 - 2003: NY initiates RGGI process
 - 2005: Seven state MOU
 - 2007: MA, MD, RI join
 - 2011: NJ withdrawals
 - Overview
 - Market based
 - Emissions cap is negotiated by states
 - Covers electric generating units over 25 MW
 - Initial Cap set at 2005 levels with 2.5% annual declines to 2020
 - New cap trajectory: additional 30% reduction by 2030
 - Power generators purchase one allowance/ton C02
 - In Maine, bulk of RGGI funds go to Efficiency Maine
 - Why RGGI
 - Economic growth, public health, market benefits, environmental benefits can all go together
 - RGGI & Public Health
 - Reforms to strengthen RGGI through 2030 will deliver additional health benefits
 - The proposed policy scenario is projected to result in 1.28 billion in savings

•

- 4:15—4:20 COP23 Update—Aaron Strong, UMaine
- 4:20—4:30 Next steps, ideas for future meeting